

PackAlliance: European alliance for innovation training & collaboration towards future packaging

Linking Academy to Industry.

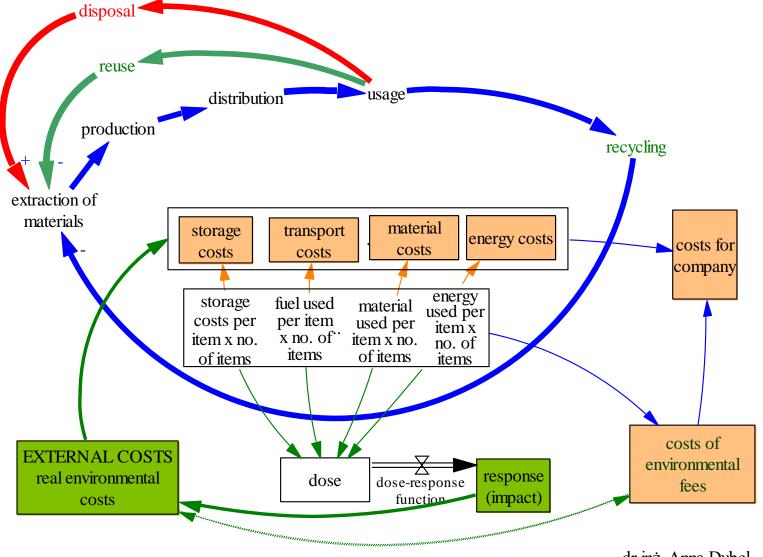
Training program module no.2: New materials and biomaterials Topic: Economic and financial efficiency analysis of new biomaterias in plastic packaging industry Dr Eng. Anna Dubel AGH University of Science and Technology Kraków, Poland

Co-funded by the **Erasmus+ Programme** of the European Union

This project has been funded with support from the European Commission. This publication [communication] reflects the views only of the author, and the Commission cannot be list responsible for any use which may be made of the information contained therein.

Feasibility study

- Diagnosis of the situation / problem identification / solution identification
- Socio-economic conditions / market analysis
- Study of legal environment / stratigic documents (preliminary risks identification)
- Competition analysis / complementary investments / stakeholders' analysis
- Scenarios analysis of the investment
- Definition of the technical and material scope of the investment / resource identification (what do we need and when)
- Institutional analysis
- Cost-Benefit Analysis:
 - demand analysis -> prognosis of future demand (number of items sold)
 - financial analysis -> Balance Sheet (fixed assests, variable assets, capital, liablities),

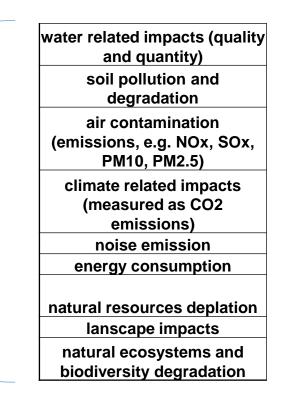

Profit Loss Account (revenues, expenditures), Cash Flow

- socio-economic analysis -> effects on the 3rd parties
- sensitivity analysis -> how the outcomes changes if the assumptions change, e.g. +/- 10%
- risk analysis -> probability of hazard occurance and magnitude of impact on the outcome

PACKALL Financial efficiency and economic efficiency, incl. environmental effects

dr inż. Anna Dubel

Indicators of financial efficiency and economic efficiency, incl. environmental effects


NPV (Net Present Vaule)

ENPV (Economic Net Present Value)

$$NPV = \sum_{t=0}^{n} \frac{CF_t}{(1+r)^t} - \sum_{t=0}^{n} \frac{I_t}{(1+r)^t}$$

CF_t - cash flow in year t (net benefits),
r - discount rate, e.g. 5%,
I - expenditures (investment costs),

t - years of investment exploitation

Examples of monetary values of environmental effects

Table 5: Project benefits and negative externalities			
Project Benefits			
Туре	Base for calculation	Monetary value	Comments
Access to drinking water	Nr. Of households in project service area	195 Euro/household/year (2014 value)	Values for following years of projection to be increased at the same rate as forecast growth in household income (see Annex 2)
Improvement of water bodies (use value)	Nr. Of people living in the project service area	26.5 Euro/person/year (2014 value)	Values for following years of projection to be increased at the same rate as forecast growth in household income (see Annex 2)
Improvement of water bodies (non use value)	Nr. Of households in project service area	0.004 – 0.011 Euro/household/year/KM river	See Annex 2 for further details
Cost savings to customers – private well	Nr. Of households newly connected	406 Euro/household/year	
Cost savings to customers – sewage disposal	Nr. Of households newly connected	448 Euro/household/year	
Cost savings to operator – water abstraction	Incremental water savings (in m₃)	Water abstraction fee (Apele Romane)	To be detailed in technical studies
Cost savings to operator – energy consumption	CO ₂ emission savings (in tonnes)	From 25 Euro/tonne in 2010 to 45 Euro/tonne in 2030	To be detailed in technical studies. See annex 2 for details on prices.
Negative Externalities			
Туре	Base for calculation	Monetary value	Comments
Increase in CO ₂ emission – sludge digestion	CO ₂ emission (in tonnes)	From 25 Euro/tonne in 2010 to 45 Euro/tonne in 2030	To be detailed in technical studies. See annex 2 for details on prices.
Increase in CO ₂ emission – sludge transportation	CO ₂ emission (in tonnes)	From 25 Euro/tonne in 2010 to 45 Euro/tonne in 2030	To be detailed in technical studies. See annex 2 for details on prices.

Source: Guidelines for Cost Benefit Analysis of Water and Wastewater projects to be supported by the European Structural and Investment Funds in 2014-2020. JASPERS CBA Guideline for Romanian Water Projects.

PackAlliance: European alliance for innovation training & collaboration towards future packaging

Linking Academy to Industry.

UNIVERSITÀ DEGLI STUDI **DI SALERNO**

proplast PLASTICS INNOVATION POLE

Copyright: CC BY-NC-SA 4.0: https://creativecommons.org/licenses/by-nc-sa/4.0/

El poder de la colaboración

With this license, you are free to share the copy and redistribute the material in any medium or format. You can also adapt remix, transform and build upon the material.

However only under the following terms:

Attribution - you must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

NonCommercial — you may not use the material for commercial purposes.

ShareAlike — if you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original. No additional restrictions - you may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

This project has been funded with support from the European Commission.

This publication [communication] reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.